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Abstract

We present Mellotron TPP-GST, an extension to Mellotron, that adds Text-Pitch Predicted Global-
Style Tokens (TPP-GST) during inference to predict global style of utterances from text alone. We train
a network to predict global style tokens using embeddings of text and fundamental frequency contours.
With this approach, we are able to generate an expressive text-to-speech model that is able to follow
arbitrary pitch contours and rhythms, without needing any reference utterances or random sampling
of style tokens during inference or singing data during training. This additionally seems to outperform
methods that require random sampling of style tokens during inference time.

1 Introduction

Current state-of-the-art deep learning voice synthesis consists of two steps. First, input features, such as
text, are passed through a neural network to generate a mel-spectrum. This is then sent to a second model,
known as a neural vocoder, transforming the mel-spectrum into a speech audio. Recent research on neural
vocoders has focused on improving computational efficiency, leading to Waveglow (3), the current state-of-the
art neural vocoder. On the other hand recent work in the use of Deep Learning for Text-To-Speech (TTS)
has focused on generating mel-spectrums that exhibit style and tonality when propagated through a neural
vocoder. The introduction of Tacotron 2(6), a model that takes text input and generates a mel-spectrum,
has inspired expressive and realistic TTS models of recent history.

Mellotron (1), an extension of Tacotron 2, introduces speaker identity, F0 contours and rhythmic align-
ment as features. This allows for granular control of pitch and rhythm, allowing the model to generate
singing utterances without having any singing vocals in the dataset. However, it ignores other factors of
tonality, such as emphasis and prosody. TP-GST (4), a separate state-of-the-art method for stylistic voice
synthesis, improves generated speech by predicting the Global Style Tokens used in Tacotron 2 to better in-
form generated style tokens during inference time. Traditionally, Tacotron 2 embeds the prosody of training
data and forms a set of (usually 10) style tokens. Then the style embedding of any utterance is repre-
sented through a learnt convex combination of those style tokens. However, this either requires access to
the ground-truth audio to generate, or must be randomly sampled. TP-GST uses a set of neural networks
to predict the embedding from speech alone, bypassing the need for audio and avoiding the drawbacks of
randomly sampling. Inspired by the advancements of both of these works, we augment Mellotron with the
innovations of TP-GST to provide granular control over pitch and rhythm, while also maintaining realistic
prosody.

2 Related Works

Within recent history, there have been several recent works in the field of expressive voice sythesis and TTS.
In this section we outline the most important works related to Mellotron TPP-GST. We encourage interested
readers to read the referenced papers to find additional related works.
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(a) Tacotron 2 model

(b) Prosody Embedding

(c) Style Tokens

Figure 1: Tacotron 2 and Style Embedding Extensions

Figure 2: Global Style Tokens. During training, the ground-truth audio is used as the input to train the
reference encoder (which generates the prosody embedding) and the attention mechanism. During inference,
an audio sample with similar length and style to the desired result can be used as reference, or the style
embedding can be picked.

2.1 Tacotron 2 and Style Tokens

Nearly all recent advancements related to TTS have involved Tacotron 2 (6), as seen in Figure 4c. Tacotron2
is a seq2seq model. In the encoder, the input text is embedded, then fed through three 5-D convolutional
layers, with the goal to improve receptive field and recognize longer contexts (e.g. N-grams). This is then
passed through a bidirectional LSTM. The output of the encoder is sent through an attention mechanism,
which is then passed into the decoder. The decoder consists of two recurrent layers, a post-net and a pre-net,
involving fully connected and convolutional layers. The result is a mel-spectrogram that can be used by a
neural vocoder to generate an audio signal.

By itself, Tacotron 2 does dont explicitly aim to encourage tonality or prosody. To do this, Prosody
Embeddings (7) and Style Embeddings (2) are introduced. As seen if Figures 4d and 1c, a reference audio is
passed through a network to generate a prosody embedding. Initial work used this directly as an input to the
attention layer between the encoder and decoder (7). To build on this, global style tokens can be introduced
(2). These are vectors that represent a global space of possible style and are learnt through an attention
mechanism from the prosody embedding. A convex combination of the style tokens is used to represent
the style embedding for a specific utterance. Thus, it the style embedding is a representation of style for
a specific utterance projected onto the space spanned by the tokens. As before, a reference audio can be
used to generate the style embedding, or the style embedding can be hand-picked or generated randomly by
sampling from a random normal with dimensionality equivalent to the number of global style tokens (usually
10), applying a softmax and using the result as weights for the each token. This process can be seen in
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(a) TPCW-GST (b) TPSE-GST

Figure 3: TP-GST Forms

Figure 2.

2.2 Text Predicted Global Style Tokens (TP-GST)

In the previously discussed architecture, generating style embedding during inference time is problematic.
Users are likely to not have access to an appropriate reference audio or the ability to hand-pick style embed-
ding for every utterance. Randomly picking style-embeddings simply imparts a random style, which can be
undesirable, or at times even destroy the generated audio. To tackle this, TP-GST introduces a module to
predict style embeddings based off text (4).

To form predictions, the result of the text embedding is first passed through a Gated Recurrent Unit
(GRU) to form a summary vector. This turns the variable length text into a fixed-length vector. Then there
are two options. The first is Text Predicted Combination Weights (TPCW), which predicts the weights to
combine the Global Style Tokens. In TPCW, the result of the GRU is sent through a single fully-connected
layer, whose outputs are treated as logits over the global style tokens. The loss is then the cross-entropy
between the logits and the ground-truths weights. This guarantees that the generated style embedding will
be in the space of possible style-embedding achievable by training data. The other option is Text Predicted
Style Embedding, which directly predicts the style embedding, skipping the combination weights. This does
not guarantee that resulting style embedding is a convex-combination of of the style tokens, but tends to
work just as well. In TPSE, the result of the GRU is sent through a k-layer fully connected network, with
ReLU activations in the hidden layers and a tanh activation in the output layer. The loss here is the L1

distance between the predicted embedding and ground-truth embedding. Both methods can be seen in
Figure 3, but Mellotron TPP-GST will build off TPSE-GST. It is worth noting that TP-GST calculates the
gradient for the new module separately from the gradient of the the rest of the network, thus the module
can be detached at any point and training with the module produces an equivalent Tacotron model.

2.3 Mellotron

Mellotron is another extension of Tacotron 2. While TP-GST controls the global style of the generated
utterance, Mellotron aims to control granular style of the generated utterance by including fundamental
frequency contours (hereby known as pitch contours) and rhythmic alignment. In particular, a data point i

consists of a mel-spectrogram mel(i), text T (i), speaker identity S(i), pitch contour P (i), rhythm allignment
R(i). Then let Zmel(i) be the ground-truth style embedding of the mel-spectrogram. Additionally, let θ be
the model parameters of Mellotron. Mellotron then attempts to maximize the log-likelihood of the training
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data set.
max
θ

∑
i∈D

logP
(

mel(i)
∣∣∣ T (i), S(i), P (i), R(i), Zmel(i) ; θ

)
(1)

The architecture is nearly identical to that of Tacotron 2, except the speaker identity is concatenated to
encoder outputs, and the pitch contour is passed through a convolutional layer and then channel-wise con-
catenated to decoder inputs.

3 Method

Mellotron TPP-GST is a combination of Mellotron and TP-GST (specifically TPSE-GST). We preserve all
the same inputs as Mellotron, but additionally train a module to predict style embeddings. However, as
opposed to simply predicting style embeddings from text, we additionally introduce pitch contours as feature
to predict the sptyle embedding, hence the name Text-Pitch Predicted Gloabal Style Tokens. Letting fφ
represent the model that predicts style tokens, we tackle the joint optimization problem

max
φ,θ

∑
i∈D

logP
(

mel(i)
∣∣∣ T (i), S(i), P (i), R(i), Zmel(i) ; θ

)
+
∥∥∥Zmel(i) − fφ

(
T (i), P (i)

)∥∥∥
1

(2)

Note that from this equation, the gradient of the loss with respect to φ is independent of the gradient
of the loss with respect to θ, thus the addition of this module does not affect training. This also means we
can use a pre-trained version of Mellotron, or swap out Mellotron for any potential future model that uses
style embeddings. During inference, we can simply replace Zmel(i) with the predicted style embedding and
sample from the distribution defined by Mellotron

m̂el ∼ P
(
·
∣∣∣ T, S, P,R, fφ(T, P ) ; θ

)
(3)

With this method, no reference audio or random sampling is required at inference. Instead, the style token
is determined solely from the input text and pitch contour. This allows for larger range of applications of
the system, while still maintaining meaningful prosody and style.

To be more precise on how define fφ, the embedded text and pitch contour are used as features. Both
are sent through independent bi-directional GRU layers with 64-units each. The final outputs of both are
taken and concatenated. This is then passed through k fully connected layers (we use 4 hidden layers with
512 units each) with ReLU activation for all hidden layers and an output layer with tanh activation. Thus,
for k layers, the TPP-GST model can be described as

TG = GRU1(T )[−1] (4)

PG = GRU2(P )[−1] (5)

E0 = TG||PG (6)

Ei = ReLU(WiEi−1 + bi), i ∈ {1, . . . , k − 1} (7)

fφ(T, P ) = tanh(WkEk−1 + bk) (8)

where X[−1] represents the last column of the matrix X and || indicates concatenation.

4 Results

4.1 Tacotron 2 and Style Tokens

When calculating the Mel Cepstral Distortion, we find that mel-spectrogram conditioned style embeddings,
TPP-GST predicted embeddings, and randomly sampled embeddings all lead to equivalent results. This is
likely due to the complex nature of speech. As can be seen in Figure 4, the generated mel-spectrograms are
comparable. Often, seemingly similar speech clips can have large magnitude differences, and vice versa. For
this reason, most literature in the field relies on Mean Opinion Score (MOS). However, we currently do not
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(a) Source Mel-Spectrogram

(b) Mel-Spectrogram Conditioned Embeddings

(c) Random Embeddings

(d) TPP-GST Embeddings

Figure 4: Source and Generated Mel-Spectrograms

have the resources or time to conduct such a study. Thus, we subjectively inspect results.

Additionally, we would like to note that the model was not able to train for long enough to draw any
solid conclusions, positive or negative. We trained on a GTX 1080 with 8 GB of VRAM and 16 GB of RAM.
This setup proved to be rather weak for the collective training of both the TPP-GST Module and Mellotron
simultaneously, and would require several days of training to reach convergence. Thus, we were unable to
reach even 1 epoch of training prior to stopping our training process. Because of this, we encourage readers
to take all results with a grain of salt. We plan to further train the model in the future, as well as conduct
a thorough hyperparameter search. Additionally, we plan to implement a system to use F0 Frame Error as
a metric in the future, as this is also standard in literature.

We trained our model for 8 hours on the LibriTTS dataset. We were able to reach 2000 iterations within
this time. Example generations can be found at here1. For each utterance, we generate samples for the
mel-spectrogram conditioned style embeddings, TPP-GST predicted embeddings, and randomly sampled
embeddings. The mel-spectrogram condition embeddings represent the goal result. The mel-spectrogram
captures significantly more information than text and pitch contours alone. As can be heard, randomly
sampled embeddings often lead to undesirable prosody and style in the generated speech. This can range
from a raspy voice to boosted low frequencies. On the other hand, the TPP-GST generations are signficantly
more consistent in prosody and style. While it does not seem to be equivalent to conditoin on the ground
truth mel-spectrogram, we anticipate it to get much closer with further training. Additionally, we would like
to mention that all generations are ill-formed; this is due to the lack of training of time.

5 Conclusion

In this work, we showed that by incorporating both the granular style control of Mellotron, and the global
style of TP-GST, we can generate much more realistic and expressive speech, while not requiring any ref-
erence audio or random sampling during inference time. This allows for a much wider set of applications
for the Mellotron model, as most users will not readily have appropriate reference audio or the time and/or
ability to hand-pick style embeddings. Through subjective review, Mellotron TPP-GST seems to outper-
form random sampling, and come close to using reference audio, while only taking text and pitch contour as
inputs. Lastly, the TPP-GST module can be swapped out to work with any new model that uses the same
style tokens.

In the future, we plan to train the model further on a more sufficient computational setup, tune hyperpa-
rameters, implement the F0 Frame Error Metric to evaluate our performance, and conduct a Mean Opinion
Score study on the generations of the Mellotron TPP-GST compared to its counterparts. Additionally,

1https://drive.google.com/drive/folders/1mdOmgsPkbbFlSsHmpkcauU8RJcxllcrn?usp=sharing
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we hope to conduct a wider meta-study to analyze the fail cases of state-of-the-art text-to-speech models
on specific phonemes, words, vowels and consonants, as we have not seen any such study when reviewing
literature. All code pertaining to this project can be found here2.
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