
Policy Metrics for Hindsight MAML (IDEA)

Arsh Zahed1

Abstract— In this document, I outline a rough idea of Policy
Metrics for Hindsight MAML (name not final). The goal is
to utilize task-specific experience gained at the end of the
meta-learning stage and after to educate the task-specific
training in the future with guided exploration. This is done by
storing a buffer of trajectories with their corresponding tasks.
During and after the meta-learning stage, an additional network
is trained to learn a metric between tasks. This metric is
determined by the policies of those tasks, and so we additionally
derive and define metrics on the space of policies for a given
Markov Decision Process. This method is anticipated to to
reduce to amount exploration required when training to a
specific task, as it explores within a specific class of tasks
where a local optima is hypothesized to lay. For sparse reward
tasks, this should hopefully reduce the attempts required to
find a policy that achieves a positive reward, while also helping
convergence speeds for tasks that don’t have sparse reward.

I. INTRODUCTION AND MOTIVATION

The goal of this approach is to utilize significant
experience gained in the meta-learning stage to further
improve the learning during task-specific specific learning.
For motivation, we look to the way humans process
information and learn to perform new tasks. When humans
attempt to learn by trial and error, we often times explore
by using paths that worked for different tasks. For example,
suppose you are new to the UC Berkeley campus. You have
access to a map, but not any source for directions. You
spend a day learning the performance of paths between
specific buildings, say you attempt several paths for pairs
in Soda, Dwinelle, Etcheverry, and VLSB. Now you are
tasked with finding an optimal path between MLK and
Cory. Your natural instinct would say, ”MLK is awfully
close to Etcheverry and Cory is awfully close to Cory, so I
will take a very similar path,” and your instinct would be
correct.

II. SOME FORMALIZATION

Thus, the proposal is to store past episodes
with the task for which they were sampled for,
(T , s0, a0, s1, a1, ..., aT−1, sT), in a ”Replay Buffer”
R to be used later with importance sampling. This isn’t a
true experience replay buffer per say, but rather a dataset of
episodes. Now we don’t simply store any set of trajectories.
Rather, the trajectories are selected are ones that exemplified
great performance when training during the meta-learning
stage. However, we can’t just pick any set of past trajectories
to learn from. The trajectories must be picked from tasks
that are similar to the one we are now specifically learning

*University of California, Berkeley

for, and must be trajectories that performed significantly
well. Thus, we now need to learn a metric between arbitrary
tasks. This itself is a meta-learning problem.

There are several ways to approach this, but I propose
Siamese Network for this task. Let θ represent the parameters
of our agaent, φ represent the parameters of our Siamese
Network, πθ the policy under parameters θ, T the task,
and LT the loss function for task T . During our initial
meta-learning via MAML, for each meta-gradient, we take a
gradient step for each sampled task T1, ..., TN . Formally, for
task Ti with learning rate α, our task-specific update rule is

θ′i = θ − α∇θLTi(πθ)

This invokes, a set of N new policies, πθ′1 , ..., πθ′N . It then
becomes a task of training the Siamese Network, fφ(Ti, Tj)
to differentiate between these N tasks, where the network
takes in two tasks and outputs a vale in the range [0, 1]
representing it’s confidence the two tasks are similar. If two
tasks result in the same or similar policy under the update
rule, we wish to train the network to pair them together.
An information-theoretic approach would be to utilize a
statistical metric. Let J(p, q) denote the Jensen-Shannon
divergence (a true metric on the set of distributions), defined
as

J(p, q) :=
D(p||p+q2) +D(q||p+q2)

2
(Note, this can be approximated with the square root sym-
metric Kullback-Leibler Divergence for our case. Also note
that technically

√
J(·, ·) is the metric). The choice of the

Jensen-Shannon Divergence is supported in section 3, and
the sampling method for states is given in section 4. Then
we can define two tasks, Ti and Tj , to be of the same ”class”
if

1

N

N∑
k=1

√
J
(
πθ′i(sk), πθ′j (sk)

)
< ε

for ε > 0 chosen as a threshold. This allows us to
apply cross-entropy loss on the Siamese Network and run
Stochastic Gradient Descent as usual.

After meta-learning and creating a replay buffer, we have
a trained initial policy πθ and trained Siamese Network
fφ. During task-specific training, we sample k trajectories
from R along with their corresponding tasks, filtered to be
trajectories whose corresponding tasks are determined to be
similar by fφ. These datapoints can then be used alongside
traditional exploration methods using importance sampling,
and gradient descent can be run as usual.

Algorithm 1 Hindsight MAML - Task Metric Training
1: θ ← MAML
2: Initialize buffer R
3: Initialize Siamese Net fφ
4: for numIter do
5: for i ∈ [N] do
6: τ ← Sample(πθ, Ti)
7: θ′i ← θ − α∇θLTi(πθ, τ)
8: τ ′ ← Sample(πθ′i , Ti)
9: if LTi(πθ′i , τ

′) < δ then
10: R← R

⋃
{τ ′, Ti}

11: for i, j ∈ [N]× [N] do
12: if P (πθ′i , πθ′j) < ε then
13: label← 1
14: else
15: label← 0
16: φ← φ− β∇φLφ (fφ (Ti, Tj) , label)

return R, fφ

III. INTERPRETATION OF JENSEN-SHANNON
DIVERGENCE

So far, the Jensen-Shannon Divergence has been
mentioned simply as it’s use as a metric between
distributions, with little explanation as to why this
exact metric serves useful. To understand the choice of this,
we first explain entropy, conditional entropy, and mutual
information. For the ease of understanding, we restrict
to the discrete case, but the LDPP/differential entropy
interpretations follow similarly.

The entropy of a discrete random variable is a measure of
the uncertainty in the random variable. Intuitively, for a dis-
crete distribution the entropy function should be maximized
by the uniform distribution, be invariant to permutations in
the PMF, and distribute over addition. As shown by Shannon,
for a discrete random variable X , the only function H that
satisfies this is

H(X) :=
∑
x

PX(x) log
1

PX(x)
= EPX(x)

[
log

1

PX(x)

]
Assuming the log is base 2, this can be thought of as
the number of bits required to optimally encode a random
variable X (such a coding can be done with a Huffman Tree).

Conditional entropy H(X|Y) is the expected entropy of
random variable X after observing random variable Y . Thus,

H(X|Y) := EPY (y)

[
EPX(x)

[
log

1

PX|Y (x)

]]
This then leads us to Mutual Information. Mutual Infor-

mation is simply a measure of the amount of information
one random variables gives about another. Intuitively, it is
given by

I(X;Y) := H(X)−H(X|Y) = H(Y)−H(Y |X)

= EPXY (x,y)

[
log

PXY (x, y)

PX(x)PY (y)

]
So how does this come into play with the Jensen-Shannon

Divergence? Let’s look at the function for J(P,Q). The
divergence is basically the average KL-Divergence of each
distribution to a mixture of the two. Letting X be an
appropriate random variable for P and Q and letting Z be
an indicator variable such that, X ∼ P if Z = 0 and X ∼ Q
if Z = 1, then we have the identity

J(P,Q) = I(X;Z)

(Note that with no information on Z, X ∼ (P +Q)/2). We
can now relate this equality to our policies from above. If
we have

1

N

N∑
k=1

√
J
(
πθ′i(sk), πθ′j (sk)

)
< ε

then we can say that on average, if we sample our actions
from a mixture of policies πθ′i and πθ′j , knowing from
which policy the action was sampled gives us no additional
information on what the action is. That is to say, on average
the policies are indistinguishable. This is powerful, as it
confirms the notion of similarity in decisions that is needed
to compare policies.

IV. POLICY METRICS

A. Equivalence Classes on Policies

In definition, two policies πθ and πφ are equivalent if
πθ(s) = πφ(s), for all states s ∈ S. However, consider
two policies the MDP with two states, 0 and 1, with self
loops and transitions both ways with deterministic transition
probabilities. Then consider two policies, πθ which always
stays on 0 and 1, and πφ which always stays on 0 but
transitions on 1. If the initialization distribution, p0(s) has
a non-zero probability of initiating at 1, then the policies
may behave differently during their trajectories. However,
if the initialization distribution always initializes at 0, both
the policies will always behave the same. Our goal is to
be able to identify policies that behave the same under an
MDP, regardless of whether or not they are actually equal.
In other words, we wish to form an equivalence relation.

Definition 1 - Policy Equivalence Relation
Let Π be the set of all policies on the given MDP, and let
πθ, πφ ∈ Π. Let pθ(τ) be the joint probability distribution
of trajectory τ under policy πθ. We say πθ ∼ πφ if

pθ(τ) = pφ(τ), ∀τ ∈ (S ×A)H

Additionally, we define

[πθ] := {πφ ∈ Π | πθ ∼ πφ}

Lastly, define the set of all equivalence classes on Π

Π/∼:= {[π] | π ∈ Π}

This definition is trivially a valid equivalence relation that
maintains the property of equivalence in behavior.

B. Metric Space of Policies
Our goal is now to find a metric between policies.

Without regard for equivalence relations, we can define a
true metric on the set of policies.

Definition 2 - Policy Metrics
Let S be the set of states, and A be the set of possible actions.
Additionally let J(·, ·) be the Jensen-Shannon Divergence, p0
be the distribution for starting states, πθ, πφ ∈ Π be policies
on the MDP, and qS be a distribution over the set of states
where qS(s) 6= 0, ∀s ∈ S. Then, we define a Policy Metric
as

dP (πθ, πφ) := Es∼qS
[√

J (πθ(s), πφ(s))

]
It can be checked that dP is a true metric over Π, thus

making (Π, dP) a metric space. However, this comes with
the drawbacks that two equivalent but unequal policies,
πθ ∼ πφ, will have a positive distance by the metric. For
many purposes, this is undesirable, as these two policies
realistically will never differ in behavior. To help combat
this, we can instead form a metric over the set of equivalence
classes, Π/∼.

Definition 3 - Equivalence Policy Metric
Let S be the set of states, and A be the set of possible actions.
Additionally let J(·, ·) be the Jensen-Shannon Divergence, p0
be the distribution for starting states, and [πθ], [πφ] ∈ Π/∼
be policy equivalence classes on the MDP. Then let

S′ :=
{
s ∈ S | ∃ τθ, τφ, s.t. s ∈ τθ, s ∈ τφ,

pθ(τθ) 6= 0, pφ(τφ) 6= 0
}

S′ is necessarily non-empty as all policies obey the same
initialization distribution. Let qS′ be a distribution over S
such that qS′(s) 6= 0 for all s ∈ S′ and qS′(s) = 0 for all
s /∈ S′. Then we can define the Equivalence Policy Metric

dE([πθ], [πφ]) := Es∼qS′

[√
J (πθ(s), πφ(s))

]
This is a true metric over Π/∼, thus making (Π/∼, dE)

a metric space. Forming this metric over the set of
equivalence classes bypasses the issue of differentiating
between policies that behave the same. However, computing
this metric empirically can often be intractable or impossible,
especially in continuous cases, as the set S′ is hard to
compute. For this reason, we are often unable to use this
metric. To get the best of both worlds in applications, it
is possible to sacrifice the property of true metric in order
preserve the property of distance in behavior.

NOTE: If valid, a better description would be

dE([πθ], [πφ]) := inf

{
Eτ∼pθ

[∑
s∈τ

√
J (πθ(s), πφ(s))

]}

+ inf

{
Eτ∼pφ

[∑
s∈τ

√
J (πθ(s), πφ(s))

]}

where we assume the infimums are taken with πθ ∈ [πθ],
and πφ ∈ [πφ]. I have yet to prove this for triangle
inequality, but the rest of the properties of metrics follow
trivially. Additionally, this would make the definition of
Policy Divergence a lot more theoretically backed, as it is
then an upper-bound on the metric distance between the
equivalence classes of the two policies.

Definition 4 - Policy Divergence
Let S be the set of states, and A be the set of possible actions.
Additionally let J(·, ·) be the Jensen-Shannon Divergence,
πθ, πφ ∈ Π be policies on the MDP, τ be a trajectory of a
set of states and actions at given time steps, and pθ(τ) be the
probability of trajectory τ given policy πθ. Then, we define
the Policy Divergence as

P (πθ, πφ) := Eτ∼pθ

[∑
s∈τ

√
J (πθ(s), πφ(s))

]

+ Eτ∼pφ

[∑
s∈τ

√
J (πθ(s), πφ(s))

]
This definition is neither a metric, nor a semi-metric, as it

does not obey triangle inequality. However, it does preserve
the idea of difference in behavior, while giving a rough
estimate on the distance between the two policies. From
this definition, if πθ ∼ πφ, then we get P (πθ, πφ) = 0, as
we desire. Additionally, if πθ � πφ, we get P (πθ, πφ) > 0,
as desired. In general, this should be treated as an upper
bound on the metric between equivalence classes of the two
policies.

Additionally, in the continuous case, calculating the
Jensen-Shannon Divergence can often be intractable. Thus,
we introduce the Symmetric Kullback-Leibler Divergence

S(p, q) :=
D(p||q) +D(q||p)

2

We can then obtain a loose bound with

J(p, q) ≤ 1

2
S(p, q)

Or a tighter bound with

J(p, q) ≤ ln

(
2

1 + e−S(p,q)

)
If the two distributions are multivariate Gaussians, these

values have closed form solutions, and are much more
tractable to compute.

V. TODOS AND EXPERIMENTS

Theres a range of things to complete and areas to explore.
(a)

1) Experimental Results to Support the Theory of the
Metrics and Policy Divergence

This is nearly complete. Plots will be added soon.

2) Expert Learning On Tasks

The most promising experimental results will come
from here. The goal is to train N experts for N tasks
using regular Natural Policy Gradients. These tasks
should ”span” the space of tasks in a sense (this is
to be defined in rigor later). We can then use the
proposed metric learning and importance sampling
method on these tasks specifically.
For example, in the image above, we train agents
to go to several places in the mini-maze, train the
Siamese Network to distinguish between tasks based
off those expert policies, and then train new agents
using that Siamese Newtork and trajectory samples.

3) Siamese Network on Tasks

Before deploying the Siamese Network in the
algorithm, we will first train it to see if it can
distinguish between known optimal policies. This is
to be tested on both discrete and continuous action
spaces, including mazes and motion control.

4) Integrate Into MAML/Reptile

Basically what it says. Add the Importance Sampling
and Siamese Network to add to the MAML algorithm.

VI. NOTES

First, I’d like to say this document is far from complete.
Next, I believe there are more viable approaches than just
Siamese Networks. One area to look into would be Exemplar
SVMs or Amortized Exemplar Networks. I also will soon
add the actual algorithm to this once the idea is fleshed
out. Lastly, I will soon go back and add references as needed.

p

