
Accelerating Physics Simulation with Uncertainty
Quantification

Sang Truong
sttruong@stanford.edu

John Ngoi
johnngoi@stanford.edu

Arsh Zahed
azahed@stanford.edu

1 Introduction

Simulation is fundamental to science and technology, and empowers various engineering disciplines to
rapidly prototype with minimal human interaction. Simulation modeling solves real-world problems
safely and efficiently, and provides a method of analysis which can be easily verified, understood, and
communicated. Across industries and disciplines such as robotics, self-driving vehicles, agriculture,
healthcare, defense, and corporations, simulation modeling provide valuable solutions by giving clear
insights into complex systems.

Engineered simulators take substantial effort and resources to build and run, are only as accurate as
the designer, and not always suitable for solving inverse problems [1]. In addition, to generate the
needed trajectories to train for a physical domain, it is expensive or unrealistic.

Despite the fact that deep learning has been used to speed up simulation, current techniques do not
model the long term evolution explicitly, hence prone to error accumulation. In addition, the lack of
uncertainty estimation makes downstream decision making challenging.

We introduce active learning to allow training with a significantly smaller number of trajectories thus
reducing the labeling costs in an efficient and effective manner. With active learning, we sample
initial trajectory that maximize model uncertainty, and query the oracle to complete those trajectories.
Then we apply beam search with a hyperparameter, Beam Width, that selects multiple alternatives
for an input sequence at each timestep based on conditional probability. The higher the beam width,
the better the density estimation with a tradeoff of higher memory usage and computational power.
Active learning along with beam search should improve the density estimation and reduce error
accumulation over long rollouts.

In this project, we attempt to construct and apply various neural network architectures along with
active learning and ensembles (to estimate uncertainty) on pendulum, two-body, and three-body
problems. To the best of our knowledge, we are the first to address these problems in the physics
domain.

State xt = (vt, v̇t) ∈ R2d Physics Equation

Simulation constants

xt+1 = (vt+1, v̇t+1)

Figure 1: Traditional discrete-time simulation loop. We replace the physics equation with an ensemble
of auto-regressive deep generative models, conditioned on a complete history. We use an uncertainty
quantification provided by the ensemble to efficiently generate new data, increasing sample efficiency,
and use continuous beam search during inference to reduce error accumulation.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

2 Related Work

Fast inference Small data Explicit long-term evolution Uncertainty quantification
[1] x
[2] x
[3] x
Our x x x x

Table 1: Compare literature in deep learning for structural simulation

2.1 Physics Simulation

Inspired by language modeling, previous work has achieved impressive results using GPT-2 architec-
ture [4] on chaotic systems [5], such as the Lorenz attractor. The authors argue that the transformer
architecture can learn longer and more complex temporal dependencies than alternative method,
which is beneficial for systems with multiple time scales or phrases. Work by Sanchez-Gonzalez et.
al uses a graph neural simulator to leverage the relational structure and physics prior to learn complex
interaction in particle-based system [1]. Additionally, recent work has explored using existing
particles in beam search [6] to estimate uncertainty in autoregressive models [7]. This estimation can
be augmented using an ensemble or a Bayesian Neural Network [8] to maintain a posterior on the
model parameters. Such a Bayesian Neural Network can be used instead of an ensemble.

2.2 Density Estimation

Density estimation allows for likelihood evaluation which can be used for beam search, active
learning, and uncertainty quantification. Previous work by Chabanet [3] and Krishnamoorthy [2]
uses an active learning framework to to continuously train simulation models given streams of data.
However, if an oracle is available to provide labels, but at the expense at heavy compute, choosing
which datapoints to label becomes the main problem with the active learning framework. Ideally,
one would want to choose datapoints that would maximize the information gained by the model, or
in other words, reduce the variance of trained models’ predictions on that datapoint. This leads to
estimating the model uncertainty. Previous work by Chua et. al [9] has used probabilistic ensemble
to estimate model uncertainties of dynamics functions in the model-based reinforcement learning
setting to increase sample-efficiency, but was limited to Model Predictive Control optimized over
an existing dataset with cross-entropy method. Additionally, recent work by Malinin et. al [7] uses
existing particles from beam search to approximate an Monte Carlo estimate of uncertainty of an
autoregressive model using importance sampling. We combine the ideas of these two works to
augment our data collection with an active learning loop that selects datapoints that maximize model
uncertainty.

3 Problem Statement

We train a generative model to estimate the dynamics of complex physical systems such as the 3-body
problem, while also estimating model uncertainty to recognize when forecasts could drift from the
ground truth. Generative models allow us to generate forecasts faster than first-principle simulators
while simultaneously estimating predictive uncertainty, enabling an active learning framework. We
consider dynamical systems whose states can be described by x = (v, v̇) ∈ R2d where v ∈ Rd
is positions and v̇ ∈ Rd is velocities. The dynamical system is a mapping f : R2d → R2d. Due
to uncertainties, we instead learn a model fθ = (x1, ..., xt) 7→ (µt+1, σt+1) ∈ R2d × R2d×2d that
maps a history of states to the parameters µt and σt of a Gaussian describing a new state. Thus, the
predicted distribution is x̂t+1 ∼ N (µt+1, σt+1). In practice, the Gaussian can be replaced with a
wide variety of other distributions, such as the Laplace distribution, where the mean and variance can
tractably be computed. We test our system on the pendulum, two-body, and three-body problem.

2

Train Ensemble fθ0
from dataset D0

Obtain Initial
Conditions D̃i

Filter D̃i to maxi-
mize model variance.

Finetune fθi from
fθi−1

and Di

Create Di from oracles
predictions on filtered D̃i.

i← 0

i← i+ 1

Figure 2: Flow chart of Algorithm 1, Uncertainty Augmented Dataset Collection for Physics Estima-
tion

4 Approach

We limit ourselves to problems with an existing simulation software including the pendulum, two
body problem, and 3-body problems. For a system, such as 3-body problem, the data set is Dpast =
{(x11, ..., x1t), ..., (xi1, ..., xit)}, xit ∈ Rk,Dfuture = {(x1t+1, ..., x

1
t+m), ..., (xit+1, ..., x

i
t+m)} where

i is the index of trajectory, t is the time step, and m is the horizon. For simpler systems, m� t but
for chaotic systems, such as the 3-body problem, we reduce m for a shorter horizon.

We use an auto-regressive formulation trained with negative log-likelihood L(x; θ) = − logP (x | θ).
The architecture of the model is flexible. For a particular sequence i, let P (xij |xi<j) be modeled as a
Gaussian, θ be the model parameters, and σ2

θ(x
i
<j) be the generated diagonal covariance matrix.

P (xi1, ..., x
i
t+m) =

t+m∏
j

P (xij |xi<j) =
t+m∏
j

N (xij |µθ(xi<j), σθ(xi<j)) (1)

We sequentially model the conditional probability distributions with ensembling and split-head
networks to estimate uncertainty. At timestep t+ 1, given an ensemble of M models, the distribution
of x̂t+1 is estimated by model i as N (µ

(i)
t+1, σ

(i)
t+1). Note that while we use Gaussian here, any

continuous distribution with a computable mean and variance can be used. The total uncertainty of
the next time step V ar(x̂t+1) can be broken down to aleatoric and epistemic uncertainty using the
law of total variance.

V ar(x̂t+1|x1:t) = V ar (Eθ[x̂t+1|x1:t, θ]|x1:t)︸ ︷︷ ︸
Epistemic

+Eθ [V ar(x̂t+1|x1:t, θ)|x1:t]︸ ︷︷ ︸
Aleatoric

(2)

≈

 1

M

M∑
i=1

(
µ
(i)
t+1

)2
−

(
1

M

M∑
i=1

µ
(i)
t+1

)2
+

(
1

M

M∑
i=1

(
σ(i)
)2)

(3)

The epistemic uncertainty refers to variance in prediction caused by randomness in the training
procedure or data collection. This is why the variance of the predicted means by an ensemble
serves as a good estimate. The aleatoric uncertainty is the expected variance in the prediction. If
the prediction of the variance is unbiased, this can be attributed to the true variance of the random
variable we wish to estimate. In this sense, this is an irreducible variance, but in practice can still be
increased by poor model quality.

When uncertainty exceeds a predetermined threshold, the simulation is ran instead, which can then
be used in the future for additional training data. This allows us to separate the training procedure
into an active learning setup with two steps. First the model is trained on a standard dataset. Then a
new dataset is created from a new set of initialized conditions (can be collected during inference),
filtering down to the trajectories that have high model variance, and collecting the ground truth for
those trajectories from a simulation. The existing model is then finetuned on the new dataset. This
process can be repeated an arbitrary amount of times.

3

M

M

M

M

M

t=1 t=2t=0 …

Figure 3: An example of Algorithm 2, Continuous Beam Search, with two particles. At timestep t,
each particle xk1:t is extended with several proposed samples of xt+1 sampled from the model. The
proposals that maximize likelihood are greedily selected. At the end, the particle that maximizes
likelihood is used.

At inference, for a single input x1:t, we use beam search to track a list of k particles x̂(1)1:t , ..., x̂
(M)
1:t

[6] (k particles for each particle in the ensemble). Beam search allows us to find a trajectory with
high probability rather than just finding the best next state as done in greedy search. At the first step
of rollout, from the output of the model, which is a distribution over next state, we sample S samples
and select the top K states with the highest probability. From these K samples, we will obtain K
more distributions in the second step. Sampling S samples from K distributions, we will obtain K*S
samples, from which we will select the top K sets of state with the highest cumulative probability.
We repeat the procedure in step 2 until we finish rollout.

Algorithm 1 Uncertainty Augmented Dataset Collection for Physics Estimation

Initialize Sim as ground truth simulation
Initialize D0 with dataset sampled from Sim
Train ensemble fθ0 = {(µ(i), σ(i))}Mi=1 from dataset D0

i← 1
while New initial conditions D̃i do

Di ←
{
Sim(x1:t) ∈ D̃i

∣∣∣ V ar(x̂t+1|x1:t) > threshold
}

Finetune ensemble fθi from ensemble fθi−1 and dataset Di

i← i+ 1
end while

Algorithm 2 Continuous Beam Search

Input: A vector x1:h ∈ R(h×d) . h is lag, d is state size
Parameters: Model: fθ(xt+h+1 | xt:t+h) is an autoregressive model
Step 1:
S ← (x1h+1, ..., x

K
h+1) ∼ fθ(xh+1 | x1:h)

P ← (P (x1h+1), ..., P (x
K
h+1))

for t=1, t++, while t ≤ T do
S ′ = ∅
P ′ = ∅
for k=1, k++, while k ≤ K do
S ′ ← S ′ ∪ (xkt+h+1 ∧ xk1:t+h) ∼ fθ(xk1:t+h)
P ′ ← P ′ ∪ (P (xkt+h+1)× P (xk1:t+h))

end for
S ← TopK(S ′)

end for
Return: Top1(S)

4

5 Results

5.1 Experimental Results

Figure 4: Model trained with a single datapoint has an average MAE energy error of about 1.9, and
maximum MAE error of nearly 4. By adding the single datapoint that maximizes the MAE to our
dataset using active learning, the model (right) has an average MAE error of below 1 and maximum
MAE error below 3.

Our main finding is that our active-learning method greatly increases sample efficiency. We have
tested our proposed method on the pendulum, tow-body and three-body problems. The full set of data
for training and validation both includes 500 trajectories with 190 data points each. Normal noise is
added to each data point proportional to the magnitude of the data: x = x + ε × x, ε ∼ N (0, n).
We experiment with various level of standard deviation of noise n from 10−3 to 10−1 and no noise
data. Note that the data magnitude is in the range [-2, 2], so noise with standard deviation of 10−1 is
quite large already. All models are trained using Adam optimizer on 200,000 epochs, with weight
decay factor of 10−4 and exponential learning rate decay with γ = 0.95. Performance metrics for
our training is MSE (for Gaussian prior) and MAE (for Laplacian prior). The baseline for active
learning is a randomly data selection process.

The main improvement provided by our method is best seen in Figure 4. We train an initial model
for a single epoch from a fully rolled out trajectory. From a dataset of new trajectories, the model
variance of a trajectory increases with both energy error and coordinate error. By training the model
on one additional trajectory, specifically the trajectory that maximizes model variance, the maximum
MAE is brought down from 4 to 3, and the average MAE is brought down from 1.9 to below 1. There
are two key takeways from this case study: (1) model variance is a fairly good predictor for its
accuracy, and (2) datapoints that maximize model variance provide the most information to gain by
the model.

For training, the baseline method shares the same auto-regressive neural network architecture as our
method. The key difference is the data used to train. Both models are trained with the same data for
one epoch. After this, our method uses the active-learning loop described in Algorithm 1 to collect
new data that maximizes model variance. On the other hand, the baseline method uses randomly
sampled data, independent of the model’s variance. As seen in Figure 5, by collecting data that
maximizes model variance, the test-set loss is greatly reduced, increasing the sample efficiency. This
trend is held across all tested tasks, and across multiple epochs of training.

During inference, we compare Continuous Beam Search to the baseline of Greedy Search. For beam
search we use k = 2 particles with a sample size of 1000. As seen in Figure 6, on average we see
marginal improvement by using Continuous Beam Search. This is because Continuous Beam Search
is able to explore more of the possible domain, and is less prone to errors that occur from the greedy
assumption.

5

Figure 5: Models trained using the uncertainty aware active learning framework show greatly in-
creased training speed. Each bar contains three heights, corresponding to first, second, and third
epoch test-loss in decreasing order. We initially trained models on the 3-Body, 2-Body, and Pendu-
lum problems for one epoch, then finetuned them using our method with uncertainty-maximizing
datapoints (blue) and a baseline method with random selected datapoints (red). On average, models
trained using our method achieved half the test loss of those trained using random samples This
improvement is maintained with an increase in epochs.

Loss of Beam vs Greedy Search
Beam Search Greedy Search

3-Body 0.6015 0.612
2-Body 0.415 0.426
Pendulum 0.079 0.080

Figure 6: We tested or models on test data using both Greedy Search and Beam Search on the 3-Body,
2-Body and Pendulum problems. Across all tasks, Beam Search performs marginally better than
Greedy Search. Beam search is able to avoid some of the pitfalls Greedy Search falls in by randomly
sampling and maintaining several proposal trajectories.

5.2 Code

Here’s the Github link to the repository:

https://github.com/sangttruong/sim

The 3 core files to review are models.py, trainer.py and utils.py.

From the repository root, go to sim\exp directory. In this directory, are pendulum (pend), two-body
(twobodies), and three-body (threebodies) experiments.

For example, if you go to pend\exp1 directory, and edit exp1.sh, it provides an example command
line to run with arguments. Here’s an example of what it looks like.

nohup python exp.py --train 1 --exp_name ’exp1’ --gpuid 2 --seed 1
--prior ’laplacian’ --forward_type ’euler’ --rollout_type ’greedy’
--epochs 1000000 --lr 1e-3 --gamma 0.986 --step_size 2000

6

https://github.com/sangttruong/sim

--weight_decay 1e-4 --model_name ’bmlp’ --l 4 --act ’elu’
--state ’pend’ --samples 1000 --t_span 0,40 --timescale 5
--lags 10 --noise_std 1e-3 --test_split 0.5
--split_type ’trajectory’ > exp/pend/exp1/exp1.txt &

To get access to the repository, email Sang Truong at sttruong@stanford.edu.

6 Conclusions

Our experiments found that our method drastically improved training speed and sample efficiency.
On the 3-Body, 2-Body and Pendulum problems our methods decreased test loss by nearly half
compared to training with random datapoints. The use of continuous beam search marginally
improves inference quality. By finetuning models on datapoints that maximize model variance,
the maximum and average error is greatly decreased. This is because the maximum epistemic
model uncertainty is effectively decreased after finetuning. Repeating this process allows for much
greater sample efficiency, an important factor to reduce when training with data generated from
expensive simulation software. Compared to other methods, our work has fast inference enabled
by a fast forward pass of a DNN, model uncertainty quantification enabled by an ensembling of
deep-generative networks, a reduction in the needed training data, a slight improvement in long-term
evolution of predicted trajectories, and the ability to predict when inference quality will be poor due
to high uncertainty.

While our method helps reduce model variance, in Bayesian methods, model uncertainty may also
be quantified in terms of entropy. Future work could improve on the methods introduced here by
using mutual information as an objective. Additionally, our work is currently limited to discrete-time
physics simulations. While these have a wide application, many physics equation instead rely on
partial-differential equations. We hope to extend our work to use Neural Ordinary Differential
Equations to build up to approximating these physics simulations.

References
[1] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.

Battaglia. Learning to simulate complex physics with graph networks, 2020.

[2] Krishnamoorthy A.N. Baur M. et al. Sivaraman, G. Machine-learned interatomic potentials by
active learning: amorphous and liquid hafnium dioxide. npj Comput Mater, 2020.

[3] Sylvain Chabanet, Hind Bril El-Haouzi, and Philippe Thomas. Coupling digital simulation
and machine learning metamodel through an active learning approach in industry 4.0 context.
Computers in Industry, 133:103529, 2021.

[4] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

[5] Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems, 2021.

[6] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation.
CoRR, abs/1702.01806, 2017.

[7] Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction,
2021.

[8] Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and survey. Lecture
Notes in Mathematics, page 45–87, 2020.

[9] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, 2018.

7

sttruong@stanford.edu

	Introduction
	Related Work
	Physics Simulation
	Density Estimation

	Problem Statement
	Approach
	Results
	Experimental Results
	Code

	Conclusions

